Literatur

Literaturliste

Es gibt eine Vielzahl von wissenschaftlichen Studien von Universitäten, renommierten Instituten und Wissenschaftlern, die die positiven Effekte von Bioaktiven Kollagenpeptiden belegen. Eine Auswahl haben wir hier zusammengetragen:

  1. Tacke, S.; Gollwitzer, A.; Grammel, L.; Henke, J. Pain therapy in small pets. Tierarztliche Praxis. Ausgabe K Kleintiere/Heimtiere
    2017, 45, 53–60, doi:10.15654/TPK-161188.
  2. Bockstahler, B.; Levine, D.; Millis, D.L.; Wandrey, S.O.N. Essential Facts of Physiotherapy in Dogs and Cats; BE VetVerlag: Babenhausen, Germany, 2004.
  3. Benavente, M.; Arias, S.; Moreno, L.; Martínez, J. Production of Glucosamine Hydrochloride from Crustacean Shell. J. Pharm.
    Pharmacol. 2015, 3, 20–26, doi:10.17265/2328-2150/2015.01.003.
  4. Siebert, H.C.; Burg-Roderfeld, M.; Eckert, T.; Stötzel, S.; Kirch, U.; Diercks, T.; Humphries, M.J.; Frank, M.; Wechselberger, R.;
    Tajkhorshid, E.; et al. Interaction of the alpha2A domain of integrin with small collagen fragments. Protein Cell 2010, 1, 393–405,
    doi:10.1007/s13238-010-0038-6.
  5. Krylov, V.B.; Grachev, A.A.; Ustyuzhanina, N.E.; Ushakova, N.A.; Preobrazhenskaya, M.E.; Kozlova, N.I.; Portsel, M.N.;
    Konovalova, I.N.; Novikov, V.Y.; Siebert, H.C.; et al. Preliminary structural characterization, anti-inflammatory and
    Mar. Drugs 2021, 19, 542 28 of 30
    anticoagulant activities of chondroitin sulfates from marine fish cartilage. Russian Chem. Bull. 2011, 60, 746–753,
    doi:10.1007/s11172-011-0115-x.
  6. Burg-Roderfeld, M.; Eckert, T.; Siebert, H.C. Bioaktive Kollagenfragmente. Neue struktur-biologische Studien an KollagenIntegrin-Komplexen belegen Justus Liebigs wegweisende Ideen. Spiegel der Forschung 2011, 28, 36–43.
  7. Stötzel, S.; Schurink, M.; Wienk, H.; Siebler, U.; Burg-Roderfeld, M.; Eckert, T.; Kulik, B.; Wechselberger, R.; Sewing, J.;
    Steinmeyer, J.; et al. Molecular organization of various collagen fragments as revealed by atomic force microscopy and diffusionordered NMR spectroscopy. ChemPhysChem 2012, 13, 3117–3125, doi:10.1002/cphc.201200284.
  8. Schadow, S.; Simons, V.S.; Lochnit, G.; Kordelle, J.; Gazova, Z.; Siebert, H.C.; Steinmeyer, J. Metabolic Response of Human
    Osteoarthritic Cartilage to Biochemically Characterized Collagen Hydrolysates. Int. J. Mol. Sci. 2017, 18, 207,
    doi:10.3390/ijms18010207.
  9. Schadow, S.; Siebert, H.C.; Lochnit, G.; Kordelle, J.; Rickert, M.; Steinmeyer, J. Collagen metabolism of human osteoarthritic
    articular cartilage as modulated by bovine collagen hydrolysates. PLoS ONE 2013, 8, e53955, doi:10.1371/journal.pone.0053955.
  10. Raabe, O.; Reich, C.; Wenisch, S.; Hild, A.; Burg-Roderfeld, M.; Siebert, H.C.; Arnhold, S. Hydrolyzed fish collagen induced
    chondrogenic differentiation of equine adipose tissue-derived stromal cells. Histochem Cell Biol. 2010, 134, 545–554,
    doi:10.1007/s00418-010-0760-4.
  11.  Bertini, I.; Calderone, V.; Cosenza, M.; Fragai, M.; Lee, Y.M.; Luchinat, C.; Mangani, S.; Terni, B.; Turano, P. Conformational
    variability of matrix metalloproteinases: Beyond a single 3D structure. Proc. Natl. Acad. Sci. USA 2005, 102, 5334–5339,
    doi:10.1073/pnas.0407106102.
  12.  Mosyak, L.; Georgiadis, K.; Shane, T.; Svenson, K.; Hebert, T.; McDonagh, T.; Mackie, S.; Olland, S.; Lin, L.; Zhong, X.; et al.
    Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS-5. Protein Sci. Publ. Protein Soc.
    2008, 17, 16–21, doi:10.1110/ps.073287008.
  13. Alcaraz, L.A.; Banci, L.; Bertini, I.; Cantini, F.; Donaire, A.; Gonnelli, L. Matrix metalloproteinase-inhibitor interaction: The
    solution structure of the catalytic domain of human matrix metalloproteinase-3 with different inhibitors. J. Biol. Inorg. Chem.
    JBIC Publ. Soc. Biol. Inorg. Chem. 2007, 12, 1197–1206, doi:10.1007/s00775-007-0288-9.
  14. Sadowski, T.; Steinmeyer, J. Effects of tetracyclines on the production of matrix metalloproteinases and plasminogen activators
    as well as of their natural inhibitors, tissue inhibitor of metalloproteinases-1 and plasminogen activator inhibitor-1. Inflamm. Res.
    2001, 50, 175–182, doi:10.1007/s000110050742.
  15. Masuyer, G.; Schwager, S.L.; Sturrock, E.D.; Isaac, R.E.; Acharya, K.R. Molecular recognition and regulation of human
    angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Sci. Rep. 2012, 2, 717, doi:10.1038/srep00717.
  16. Kawakami, Y.; Matsuo, K.; Murata, M.; Yudoh, K.; Nakamura, H.; Shimizu, H.; Beppu, M.; Inaba, Y.; Saito, T.; Kato, T.; et al.
    Expression of Angiotensin II Receptor-1 in Human Articular Chondrocytes. Arthritis 2012, 2012, 648537, doi:10.1155/2012/648537.
  17. Nakamura, F.; Tsukamoto, I.; Inoue, S.; Hashimoto, K.; Akagi, M. Cyclic compressive loading activates angiotensin II type 1
    receptor in articular chondrocytes and stimulates hypertrophic differentiation through a G-protein-dependent pathway. FEBS
    Open Bio 2018, 8, 962–973, doi:10.1002/2211-5463.12438.
  18. Kouguchi, T.; Ohmori, T.; Shimizu, M.; Takahata, Y.; Maeyama, Y.; Suzuki, T.; Morimatsu, F.; Tanabe, S. Effects of a chicken
    collagen hydrolysate on the circulation system in subjects with mild hypertension or high-normal blood pressure. Biosci.
    Biotechnol. Biochem. 2013, 77, 691–696, doi:10.1271/bbb.120718.
  19. Kosinska, M.K.; Ludwig, T.E.; Liebisch, G.; Zhang, R.; Siebert, H.C.; Wilhelm, J.; Kaesser, U.; Dettmeyer, R.B.; Klein, H.; Ishaque,
    B.; et al. Articular Joint Lubricants during Osteoarthritis and Rheumatoid Arthritis Display Altered Levels and Molecular
    Species. PLoS ONE 2015, 10, e0125192, doi:10.1371/journal.pone.0125192.
  20. Oke, S.; Aghazadeh-Habashi, A.; Weese, J.S.; Jamali, F. Evaluation of glucosamine levels in commercial equine oral supplements
    for joints. Equine Vet. J. 2006, 38, 93–95, doi:10.2746/042516406775374306.
  21. Eckert, T.; Stötzel, S.; Burg-Roderfeld, M.; Sewing, J.; Lütteke, T.; Nifantiev, N.E.; Vliegenthart, J.F.G.; Siebert, H.-C. In silico
    Study on Sulfated and Non-Sulfated Carbohydrate Chains from Proteoglycans in Cnidaria and Interaction with Collagen. Open
    J. Phys. Chem. 2012, 2, 123–133, doi:10.4236/ojpc.2012.22017.
  22. Bhunia, A.; Vivekanandan, S.; Eckert, T.; Burg-Roderfeld, M.; Wechselberger, R.; Romanuka, J.; Bächle, D.; Kornilov, A.V.; von
    der Lieth, C.-W.; Jiménez-Barbero, J.S.; et al. Why Structurally Different Cyclic Peptides Can Be Glycomimetics of the HNK-1
    Carbohydrate Antigen. J. Am. Chem. Soc. 2010, 132, 96–105, doi:10.1021/ja100344v.
  23. Tsvetkov, Y.E.; Burg-Roderfeld, M.; Loers, G.; Arda, A.; Sukhova, E.V.; Khatuntseva, E.A.; Grachev, A.A.; Chizhov, A.O.; Siebert,
    H.C.; Schachner, M.; et al. Synthesis and molecular recognition studies of the HNK-1 trisaccharide and related oligosaccharides.
    The specificity of monoclonal anti-HNK-1 antibodies as assessed by surface plasmon resonance and STD NMR. J. Am. Chem.
    Soc. 2012, 134, 426–435, doi:10.1021/ja2083015.
  24. Toegel, S.; Pabst, M.; Wu, S.Q.; Grass, J.; Goldring, M.B.; Chiari, C.; Kolb, A.; Altmann, F.; Viernstein, H.; Unger, F.M. Phenotyperelated differential alpha-2,6- or alpha-2,3-sialylation of glycoprotein N-glycans in human chondrocytes. Osteoarthr. Cartil. 2010,
    18, 240–248, doi:10.1016/j.joca.2009.09.004.
  25. Schauer, R.; Kamerling, J.P. Exploration of the Sialic Acid World. Adv. Carb. Chem. Biochem. 2018, 75, 1–213,
    doi:10.1016/bs.accb.2018.09.001.
  26. Zhang, R.; Loers, G.; Schachner, M.; Boelens, R.; Wienk, H.; Siebert, S.; Eckert, T.; Kraan, S.; Rojas-Macias, M.A.; Lütteke, T.; et
    al. Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides.
    ChemMedChem 2016, 11, 990–1002, doi:10.1002/cmdc.201500609.
    Mar. Drugs 2021, 19, 542 29 of 30
  27. Siebert, H.-C.; Scheidig, A.; Eckert, T.; Wienk, H.; Boelens, R.; Mahvash, M.; Petridis, A.K.; Schauer, R. Interaction studies of
    sialic acids with model receptors contribute to nanomedical therapies. J. Neurol. Disord. 2015, 3, 1–6.
  28. Siebert, H.-C.; Lu, S.-Y.; Wechselberger, R.; Born, K.; Eckert, T.; Liang, S.; Lieth, C.-W.v.d.; Jiménez-Barbero, J.; Schauer, R.;
    Vliegenthart, J.F.G.; et al. A lectin from the Chinese bird-hunting spider binds sialic acids. Carbohydr. Res. 2010, 344, 1515–1525,
    doi:10.1016/j.carres.2009.06.002.
  29. Zhang, R.; Wu, L.; Eckert, T.; Burg-Roderfeld, M.; Rojas-Macias, M.A.; Lütteke, T.; Krylov, V.B.; Argunov, D.A.; Datta, A.;
    Markart, P.; et al. Lysozyme’s lectin-like characteristics facilitates its immune defense function. Q. Rev. Biophys. 2017, 50, e9,
    doi:10.1017/S0033583517000075.
  30. Zhang, R.; Eckert, T.; Lütteke, T.; Hanstein, S.; Scheidig, A.; Bonvin, A.M.; Nifantiev, N.E.; Kozar, T.; Schauer, R.; Enani, M.A.;
    et al. Structure-Function Relationships of Antimicrobial Peptides and Proteins with Respect to Contact Molecules on Pathogen
    Surfaces. Curr. Top. Med. Chem. 2016, 16, 89–98, doi:10.2174/1568026615666150703120753.
  31. Kar, R.K.; Gazova, Z.; Bednarikova, Z.; Mroue, K.H.; Ghosh, A.; Zhang, R.; Ulicna, K.; Siebert, H.C.; Nifantiev, N.E.; Bhunia, A.
    Evidence for Inhibition of Lysozyme Amyloid Fibrillization by Peptide Fragments from Human Lysozyme: A Combined
    Spectroscopy, Microscopy, and Docking Study. Biomacromolecules 2016, 17, 1998–2009, doi:10.1021/acs.biomac.6b00165.
  32. Oesser, S.; Adam, M.; Babel, W.; Seifert, J. Oral administration of (14)C labeled gelatin hydrolysate leads to an accumulation of
    radioactivity in cartilage of mice (C57/BL). J. Nutr. 1999, 129, 1891–1895, doi:10.1093/jn/129.10.1891.
  33. Oesser, S.; Seifert, J. Stimulation of type II collagen biosynthesis and secretion in bovine chondrocytes cultured with degraded
    collagen. Cell Tissue Res. 2003, 311, 393–399, doi:10.1007/s00441-003-0702-8.
  34. Schunck, M.; Louton, H.; Oesser, S. The Effectiveness of Specific Collagen Peptides on Osteoarthritis in Dogs-Impact on
    Metabolic Processes in Canine Chondrocytes. Open J. Anim. Sci. 2017, 07, 254–266, doi:10.4236/ojas.2017.73020.
  35. Dobenecker, B.; Reese, S.; Jahn, W.; Schunck, M.; Hugenberg, J.; Louton, H.; Oesser, S. Specific bioactive collagen peptides
    (PETAGILE((R))) as supplement for horses with osteoarthritis: A two-centred study. J. Anim. Physiol. Anim. Nutr. 2018, 102
    (Suppl. 1), 16–23, doi:10.1111/jpn.12863.
  36. Simons, V.S.; Lochnit, G.; Wilhelm, J.; Ishaque, B.; Rickert, M.; Steinmeyer, J. Comparative Analysis of Peptide Composition and
    Bioactivity of Different Collagen Hydrolysate Batches on Human Osteoarthritic Synoviocytes. Sci. Rep. 2018, 8, 17733,
    doi:10.1038/s41598-018-36046-3.
  37. Porfírio, E.; Fanaro, G.B. Collagen supplementation as a complementary therapy for the prevention and treatment of
    osteoporosis and osteoarthritis: A systematic review. Revista Brasileira de Geriatria e Gerontologia 2016, 19, 153–164,
    doi:10.1590/1809-9823.2016.14145.
  38. Li, R.; Qiao, S.; Zhang, G. Analysis of angiotensin-converting enzyme 2 (ACE2) from different species sheds some light on crossspecies receptor usage of a novel coronavirus 2019-nCoV. J. Infect. 2020, 80, 469–496, doi:10.1016/j.jinf.2020.02.013.
  39. Saponaro, F.; Rutigliano, G.; Sestito, S.; Bandini, L.; Storti, B.; Bizzarri, R.; Zucchi, R. ACE2 in the Era of SARS-CoV-2:
    Controversies and Novel Perspectives. Front. Mol. Biosci. 2020, 7, doi:10.3389/fmolb.2020.588618.
  40. Lam, S.D.; Bordin, N.; Waman, V.P.; Scholes, H.M.; Ashford, P.; Sen, N.; van Dorp, L.; Rauer, C.; Dawson, N.L.; Pang, C.S.M.;
    et al. SARS-CoV-2 spike protein predicted to form complexes with host receptor protein orthologues from a broad range of
    mammals. Sci. Rep. 2020, 10, 16471, doi:10.1038/s41598-020-71936-5.
  41. Zhang, N.; Liu, C.; Zhang, R.; Jin, L.; Yin, X.; Zheng, X.; Siebert, H.C.; Li, Y.; Wang, Z.; Loers, G.; et al. Amelioration of clinical
    course and demyelination in the cuprizone mouse model in relation to ketogenic diet. Food Funct. 2020, 11, 5647–5663,
    doi:10.1039/c9fo02944c.
  42. Zhang, N.; Liu, C.; Jin, L.; Zhang, R.; Siebert, H.C.; Wang, Z.; Prakash, S.; Yin, X.; Li, J.; Hou, D.; et al. Influence of LongChain/Medium-Chain Triglycerides and Whey Protein/Tween 80 Ratio on the Stability of Phosphatidylserine Emulsions (O/W).
    ACS Omega 2020, 5, 7792–7801, doi:10.1021/acsomega.9b03702.
  43. Zhang, R.; Jin, L.; Zhang, N.; Petridis, A.K.; Eckert, T.; Scheiner-Bobis, G.; Bergmann, M.; Scheidig, A.; Schauer, R.; Yan, M.; et
    al. The Sialic Acid-Dependent Nematocyst Discharge Process in Relation to Its Physical-Chemical Properties Is A Role Model
    for Nanomedical Diagnostic and Therapeutic Tools. Mar. Drugs 2019, 17, 469, doi:10.3390/md17080469.
  44. Zhang, R.; Zhang, N.; Mohri, M.; Wu, L.; Eckert, T.; Krylov, V.B.; Antosova, A.; Ponikova, S.; Bednarikova, Z.; Markart, P.; et al.
    Nanomedical Relevance of the Intermolecular Interaction Dynamics-Examples from Lysozymes and Insulins. ACS Omega 2019,
    4, 4206–4220, doi:10.1021/acsomega.8b02471.
  45. Mele, E. Epidemiologie der Osteoarthritis-Osteoarthrose(OA). Vet. Focus 2007, 17, 4–10, doi:10.1055/s-0034-1381772.
  46. Belshaw, Z.; Asher, L.; Harvey, N.D.; Dean, R.S. Quality of life assessment in domestic dogs: An evidence-based rapid review.
    Vet. J. 2015, 206, 203–212, doi:10.1016/j.tvjl.2015.07.016.
  47. Hansen, B.D. Assessment of pain in dogs: Veterinary clinical studies. ILAR J. 2003, 44, 197–205, doi:10.1093/ilar.44.3.197.
  48. Hielm-Björkman, A.K.; Kuusela, E.; Liman, A.; Markkola, A.; Saarto, E.; Huttunen, P.; Leppäluoto, J.; Tulamo, R.-M.; Raekallio,
    M. Evaluation of methods for assessment of painassociated with chronic osteoarthritis in dogs. JAVMA 2003, 11, 1552–1558.
  49. Weide, N. The Application of Gelatinehydrolysate in Clinical Orthopedic Healthy Dogs and Dogs with Chronic Defects on the Locomotor
    System; Tierärztliche Hochschule: Hannover, Germany, 2004.
  50. Hielm-Björkman, A. Assessment of Chronic Pain and Evaluation of Three Complementary Therapies (Gold Implants, Green Lipped
    Mussel and a Homeopathic Combination Preparation) for Canine Osteoarthritis, Using Ran Domized, Controlled, Double-Blind Study
    Designs; Ubiversity of Helsinki: Helsinki, Finland, 2007.
    Mar. Drugs 2021, 19, 542 30 of 30
  51. Sastravaha, A.; Suwanna, N.; Sinthusingha, C.; Noosud, J.; Roongsitthicha, A. Ameliorative Effects of Omega-3 Concentrate in
    Managing Coxofemoral Osteoarthritic Pain in Dogs. Thai. J. Vet. Med. 2016, 46, 305–311.
  52. Seales, E.C.; Jurado, G.A.; Singhal, A.; Bellis, S.L. Ras oncogene directs expression of a differentially sialylated, functionally
    altered beta1 integrin. Oncogene 2003, 22, 7137–7145, doi:10.1038/sj.onc.1206834.
  53. Petridis, A.K.; Nikolopoulos, S.N.; El-Maarouf, A. Physical and functional cooperation of neural cell adhesion molecule and
    beta1-integrin in neurite outgrowth induction. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2011, 18, 1109–1113,
    doi:10.1016/j.jocn.2010.12.047.
  54. Luo, Y.; Sinkeviciute, D.; He, Y.; Karsdal, M.; Henrotin, Y.; Mobasheri, A.; Onnerfjord, P.; Bay-Jensen, A. The minor collagens
    in articular cartilage. Protein Cell 2017, 8, 560–572, doi:10.1007/s13238-017-0377-7.
  55. Kashiwagi, M.; Tortorella, M.; Nagase, H.; Brew, K. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase
    2 (ADAM-TS5). J. Biol. Chem. 2001, 276, 12501–12504, doi:10.1074/jbc.C000848200.
  56. Parkkonen, O.; Nieminen, M.T.; Vesterinen, P.; Tervahartiala, T.; Perola, M.; Salomaa, V.; Jousilahti, P.; Sorsa, T.; Pussinen, P.J.;
    Sinisalo, J. Low MMP-8/TIMP-1 reflects left ventricle impairment in takotsubo cardiomyopathy and high TIMP-1 may help to
    differentiate it from acute coronary syndrome. PLoS ONE 2017, 12, e0173371, doi:10.1371/journal.pone.0173371.
  57. Ertunc, N.; Sato, C.; Kitajima, K. Sialic acid sulfation is induced by the antibiotic treatment in mammalian cells. Biosci. Biotechnol.
    Biochem. 2020, 84, 2311–2318, doi:10.1080/09168451.2020.1792763.
  58. Dixon, W.J. BMDP Statistical Software Manual; University of California Press: Berkeley, CA, USA, 1993.
  59. Cytel Studio StatXact; Cytel Software Corporation: Cambridge, MA, USA, 2010.
  60. Schrödinger. Maestro, v. 12.3.013; Schrödinger, LLC: New York, NY, USA, 2020.
  61. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.;
    Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009.
  62. Bella, J.; Liu, J.; Kramer, R.; Brodsky, B.; Berman, H.M. Conformational effects of Gly-X-Gly interruptions in the collagen triple
    helix. J. Mol. Biol. 2006, 362, 298–311, doi:10.1016/j.jmb.2006.07.014.
  63. Halgren, T. New method for fast and accurate binding-site identification and analysis. Chem. Biol. Drug Des. 2007, 69, 146–148,
    doi:10.1111/j.1747-0285.2007.00483.x.
  64. Schrödinger. SiteMap, Version 3.9; Schrodinger, LLC: New York, NY, USA, 2013.
  65. Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid,
    accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750–1759,
    doi:10.1021/Jm030644s.
  66. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry,
    J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J.
    Med. Chem. 2004, 47, 1739–1749, doi:10.1021/Jm0306430.
  67. Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra
    precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med.
    Chem. 2006, 49, 6177–6196, doi:10.1021/jm051256o.
  68. Schrödinger. Glide, Version 6.1; Schrödinger, LLC: New York, NY, USA, 2013.
  69. Ritchie, D.W. Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins 2003, 52, 98–106.
  70. Bowers, K.J.; Sacerdoti, F.D.; Salmon, J.K.; Shan, Y.; Shaw, D.E.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.;
    et al. Molecular dynamics---Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of
    the 2006 ACM/IEEE Conference on Supercomputing—SC ’06, Tampa, FL, USA, 11–17 November 2006.
  71. Jorgensen, W.L.; Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy
    minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666, doi:10.1021/ja00214a001.
  72. Jorgensen, W.L.; Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular
    systems. Proc. Natl. Acad. Sci. USA 2005, 102, 6665–6670, doi:10.1073/pnas.0408037102.
  73. Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271,
    doi:10.1021/J100308a038.
  74. Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully automated protein-ligand interaction profiler.
    Nucleic Acids Res. 2015, 43, W443–W447, doi:10.1093/nar/gkv315.
Nach oben scrollen